Progress Report of the TimWG

- Members
- Objectives (Mandate)
- Meetings
- List of Consultants
- Signals Identified
- Overall Pictorial Presentation
- Topics to be Resolved
- Tests in Progress (Including Timescales)
- Conclusions (TimWG + PLC)

TimWG Members

٠	Gary Beetham	SL/CO	Chairman
٠	Philippe Baudrenghien	SL/HRF	
٠	Etienne Carlier	SL/BT	Secretary
٠	Michel Jonker	SL/CO +	SL/OP
٠	Julian Lewis	PS/CO	
٠	John Pett	SL/PO	
٠	Adriaan Rijllart	LHC/IAS	i + IWG
•	Jean-Jacques Savioz	SL/BI	

TimWG Mandate (April 1999)

"Synchronisation and timing is required for various systems in the LHC accelerator. The WG should take into account the requirements from accelerator operation and the needs of the users to establish a clear philosophy for timing associated with LHC. The summary of the WG should be documented as a functional specification, for the end of September 1999.

Timing and synchronisation includes domains such as:

Beam synchronous timing for injection and extraction, experiments, RF, beam instrumentation and other accelerators in the injector chain.

"Cycle" timing for synchronisation of settings for distributed machine components such as cavity voltages and magnet currents.

Synchronisation of data acquisition systems for post-mortem analysis after a beam dump or equipment fault. This includes the magnet protection system, the cryogenic system, the vacuum system, power converters and possibly other systems to be identified.

Timing references for the archiving and tagging of data.

For each domain the clients, their requirements (as an example, the precision of the timing) and their geographical location should be identified.

The WG should formulate recommendations in order to avoid unnecessary divergence between solutions for the different systems.

The working group will report to PLC, and keep both TCC and MARIC informed whenever appropriate."

Gary Beetham

Objectives

- Determine all potential clients for LHC timing, including transfer line users
- Identify all their timing requirements
- Specify the precision required and the geographical location for each signal
- But not to propose solutions (yet)
- Avoid unnecessary divergence
- Post-mortem data acquisition analysis
- "Establish a clear philosophy for the timing associated with LHC"

	TimWG MEETINGS					
Meeting	Date 1999	Speaker	Subject/Requirements			
1	I 15 April P. Proudlock		Introductory remarks			
		R. Lauckner	Mandate			
		All	TimWG members timing interests			
2	30 April	E. Carlier	Web page			
		J. Pett	SL/PO timing			
		E. Carlier	SL/BT timing			
3	12 May	E. Tsesmelis	CMS test beams			
		M. Jonker	SPS + LEP Timing			
4	28 May	P. Baudrenghien	SL/HRF LHC timing			
		A. Rijllart	LHC equipment group's timing			
5	11 June	J-J Savioz	Beam instrumentation fast and slow timing			
		J. Lewis	PS involvement in LHC timing			
6	25 June	A. Swift	Timing policy for electricity control			
		G. Baribaud	SPS experimental areas in the LHC era			
7	9 July	Q. King	SL/PO WorldFIP timing			
		R. Brun	SL/LRF WorldFIP timing			
8	20 August	Q. King	LHC timing events based on absolute time			
9	27 August	M. Jonker, M. Lamont	Timing requirements for machine operation			
		P. Anderssen	NTP computer synchronisation			
10	24 September	B. Taylor	Timing, Trigger & Control (TTC) for LHC Detectors			

http://hpslweb.cern.ch/slbt/tim.html

TIMING CONSULTANTS						
NAME	GROUP	TOPIC				
Guy Baribaud	SL/BI	SPS Experimental Areas				
Philippe Baudrenghien	SL/HRF	SL/LHC RF				
Gary Beetham	SL/CO	Machine Timing, GPS				
Thomas Bohl	SL/HRF	SPS Hadron RF				
Luca Bottura	LHC/MTA	Magnet Tests, String 2				
Raymond Brun	SL/LRF	WorldFIP				
Etienne Carlier	SL/BT	Injectors, Kickers, Q Measurements				
Juan Casas	LHC/ACR	Cryogenics				
Jose Luis Gomez Costa	LHC/ICP	Magnet Protection				
Quentin King	SL/PO	Power Converters, WorldFIP				
Michel Jonker	SL/CO	SL Machine Timing				
Mike Lamont	SL/OP	SPS + LEP Operations				
Robin Lauckner	SL/CO	Machine Controls				
Julian Lewis	PS/CO	PS Machine Timing				
Rolf Lindner	EP/LHB	LHC-B Test Beam Coordinator				
John Pett	SL/PO	Power Converters, WorldFIP				
Soren Poulsen	ST/EL	Electricity Control				
Adriaan Rijllart	LHC/IAS	String 1/2 Acquisition, IWG				
Shaun Roe	EP/ATT	ATLAS Tracking				
Felix Rodriguez Mateo	LHC/ICP	Magnet Protection				
Jean-Jacques Savioz	SL/BI	Beam Instrumentation				
Rudiger Schmidt	LHC/ICP	LHC Philosophy				
Pierre Strubin	LHC/VAC	CERN Vacuum				
Arthur Swift	ST/EL	Electricity Control				
Bruce Taylor	EP/CMD	TTC*				
Emmanuael Tsesmelis	EST/LEA	CMS Beam Coordinator				

* Timing, Trigger and Control (TTC) Systems for LHC Detectors – RD12

Signals Identified

FAST PULSED SIGNALS

- LHC Injection Pre-pulse
- LHC Radio Frequency (RF)
- LHC Bunch Frequency
- LHC Revolution Frequency (Rev)
- CERN 10 MHz
- SLOW ENCODED SIGNALS
 - 1ms Clock + Event Codes
 - Time of Day

	LHC FAST INJECTION PREPULSE								
GROUP	GROUP CONTACT PRECISION LOCATION COMMENTS								
SL/HRF	P. Baudrenghien	<250ps	BA3 and SR4	Distributed from PCR					
SL/BT	E. Carlier	1ns	UA23 + SR2	LHC Injection MK12					
"	"	1ns	SPS – BA6	SPS Extraction MKE6					
"	"	1ns	UA87 + SR8	Injection MK18					
"	"	1ns	SPS - BA4	SPS Extraction MKE4					
SL/BI	J-J. Savioz	1us	PCR	BST Master					

An Injection Pre-pulse is generated at a fixed delay before the transfer of each "batch" from the SPS into LHC. One batch contains

243 SPS bunches and 12 batches are required to fill LHC. To compensate for the rise time of the LHC injection kicker, the last batch

contains less bunches, resulting in a total of 2835. The Injection Pre-pulses are generated in the SPS BA3 Faraday Cage.

	LHC 400MHz RF							
GROUP CONTACT PRECISION LOCATION COMMENTS								
SL/HRF	P. Baudrenghien	<250ps	BA3, SR4, UA43, UA47*	PCR Distribution				
SL/BI	J-J. Savioz	100ps	LHC – Point 4	Q Meter, BCT				
EST/LEA	E. Tsesmelis	?	LHC – Point 1	ATLAS				
EST/LEA	E. Tsesmelis	?	LHC – Point 2	ALICE				
EST/LEA	E. Tsesmelis	?	LHC – Point 5	CMS				
EST/LEA	E. Tsesmelis	?	LHC – Point 8	LHC-B				

LHC Radio Frequency (RF). 400.789 MHz at 450 GeV injection energy and 400.790 MHz at 7 TeV collision energy.

Generated in the LHC Faraday Cage and distributed from the PCR.

* UA43 and UA47 are klystron galleries at LEP point 4

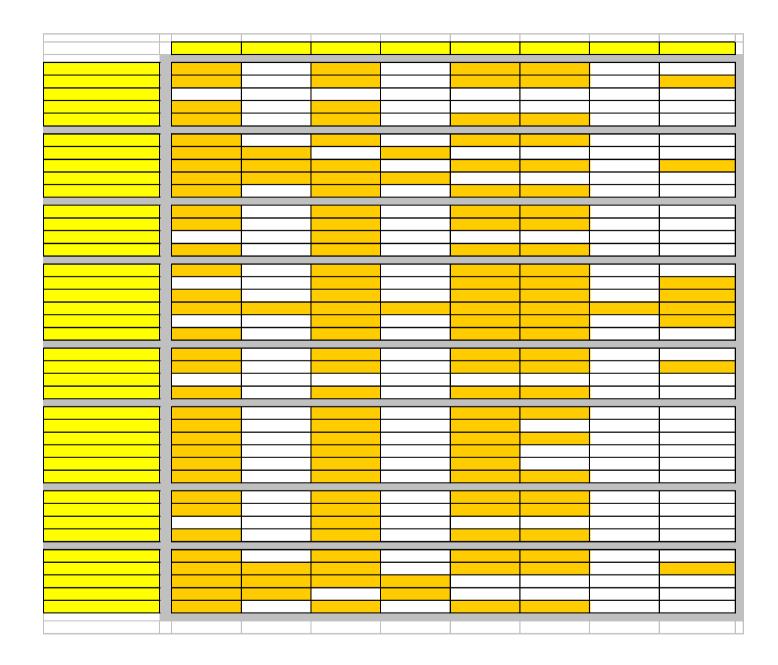
Gary Beetham

	LHC BUNCH FREQUENCY									
GROUP	GROUP CONTACT PRECISION LOCATION COMMENTS									
SL/HRF	P. Baudrenghien	<250ps	SR4, UA43, UA47*	Distribution from PCR						
SL/BI	J-J. Savioz	1ns	All pits + alcoves + PCR	BST Connection?						
EST/LEA	E. Tsesmelis	?	LHC - Point 1	ATLAS						
EST/LEA	E. Tsesmelis	?	LHC - Point 5	CMS						
EST/LEA	E. Tsesmelis	?	LHC - Point 2	ALICE						
EST/LEA	E. Tsesmelis	?	LHC - Point 8	LHC-B						

Bunch Frequency = 1/10 of Radio Frequency, i.e. 40.079 MHz. Bunch spacing is 24.95 ns.

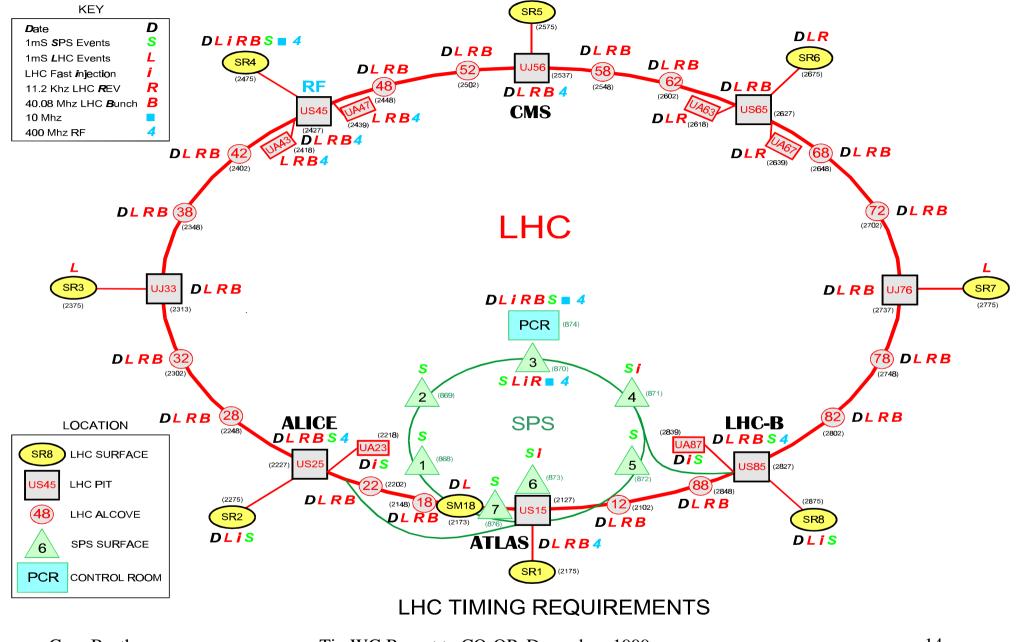
Generated in LHC Faraday Cage and distributed from PCR.

	LHC REVOLUTION FREQUENCY							
GROUP	CONTACT	PRECISION	LOCATION	COMMENTS				
SL/HRF	P. Baudrenghien	<250ps	BA3, SR4, UA43, UA47	Distributed from PCR				
SL/BI	J-J. Savioz	1ns	All pits+alcoves+PCR	Local resync BST				
SL/BT	E. Carlier	5ns	SR6 + UA63 + UA67	MKA,B,D,QH/V. Redundant				
EST/LE	E. Tsesmelis	?	LHC - Point 1	ATLAS				
А								
EST/LE	E. Tsesmelis	?	LHC - Point 5	CMS				
А								
EST/LE	E. Tsesmelis	?	LHC - Point 2	ALICE				
А								
EST/LE	E. Tsesmelis	?	LHC - Point 8	LHC-B				
А								


The Revolution Frequency is defined as the time it takes a bunch to complete one turn of the LHC circumference. It is defined as Rev = RF/35640 where 35640 is the "Harmonic number" of the LHC. At injection, the frequency is 11.245kHz and at collision it is 11.246kHz. Generated in LHC Faraday Cage and distributed from PCR. *UA43 and UA47 are the klystron galleries at LEP Point 4.

	10 MHz									
Group	Group Contact Precision Location Comments									
PS/CO	J. Lewis	1 in 10-11	PS MNR/RA04	GPS Referenced						
SL/HRF	P. Baudrenghien	<250ps	SPS BA3 Faraday Cage							
"	"	<250ps	PCR							
"	"	<250ps	LHC SR4 Faraday Cage							

It will provide a common reference clock for all the CERN wide RF counters and generators.


	LHC SLOW TIMING REQUIREMENTS								
GROUP	CONTACT	ТҮРЕ	PRECISION	RE-SYNC*	PROTOCOL+	LOCATION	COMMENTS		
SL/PO	J. Pett	Date + LHC Events	15us	10ms	WorldFIP	Alcoves + pits + SM18	Referenced to GPS		
SL/BT	E. Carlier	Date + SPS Events	10us	1ms	?	UA23 + SR2	Injection MK12		
"	"	Date + SPS Events	10us	1ms	?	UA87 + SR8	Injection MK18		
"	"	Date + LHC Events	10us	1ms	?	UA63/7 + SR6	Extraction MKB/D		
"	"	Date + LHC Events	10us	1ms	?	UA63/7 + SR6	Aperture MKAH/V		
"	"	Date + LHC Events	10us	1ms	?	UA63/7 + SR6	Q Meas. MKQH/V		
SL/HRF	P. Baudrenghien	SPS Events	1us	1ms	?	BA3 and SR4	SPS Timing		
"	"	LHC Events	1us	1ms	?	BA3, SR4,UA43,UA47	LHC Timing		
SL/LRF	R. Brun	Date + LHC Events	15us	5ms	WorldFIP	Pt.4 pit + SR4			
LHC/ICP	F. Rodriguez	Date	1ms	1 Hour	WorldFIP	Alcoves + pits	AMC		
LHC/MTA	L. Bottura	Date	1-10ms	1-10Hours	Ethernet	SM18	String 2		
LHC/ACR	J. Casas	Date	1s	1 Day	Ethernet	Alcoves + pits			
LHC/VAC	P. Strubin	Date	1s	1 Day	Ethernet	Alcoves + pits			
ST/EL	A. Swift	Pulse	1ms	1 minute	Hardwired	Principle Electrical Substations	GPS referenced		
						(>150)	throughout system		
SL/BI	G. Baribaud	SPS Events	10us	1ms	?	Experimental Areas	SPS Timing		
"	J-J. Savioz	Date + LHC Events	15us	1ms	WorldFIP	Alcoves + pits + PCR			

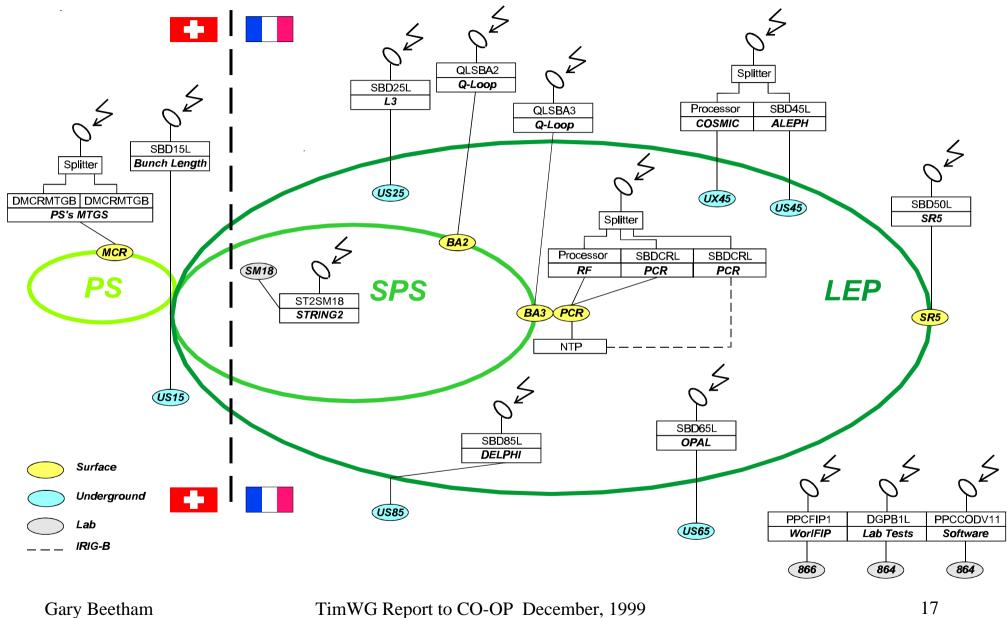
* RE-SYNC is the maximum time between consecutive synchronisation actions. + It is not yet clear what will replace the MIL1553 Command/Response bus.

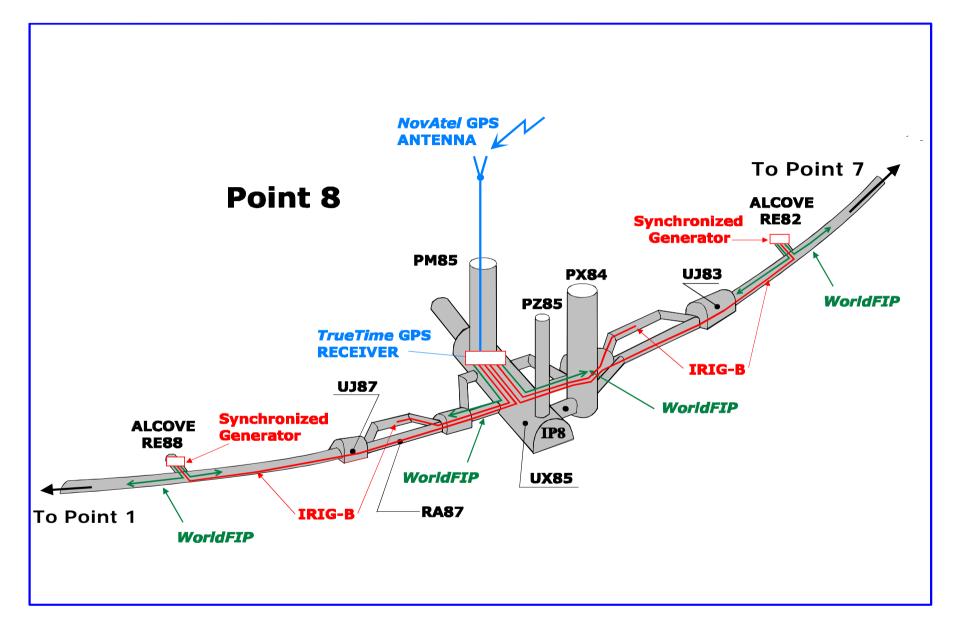
Gary Beetham

 		 -	-	
 		 -		

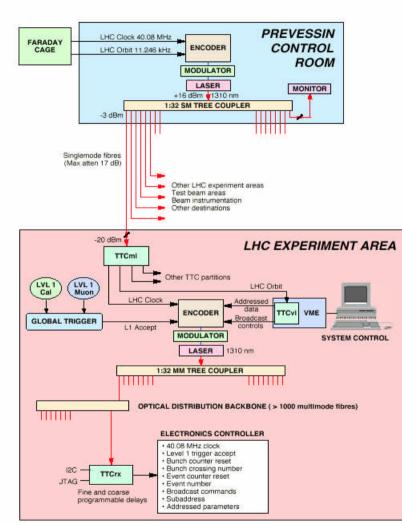
Gary Beetham

Topics to be Resolved


- Do we require a separate timing channel if we use events based on real-time?
- <20 us jitter, ref. to GPS, for WorldFIP cycles</p>
- Can the IRIG-B Standard transmit GPS date time to the alcoves, using copper cable? (radiation)
- A unified time format for archiving and data tagging? At LEP, BCD, Unix, POSIX, NTP, are all used.
- Do we use an updated LEP type BST or a TTC system for LHC beam instrumentation?
- Will there be a TG8 replacement?
- Redundancy, reliability, determinism, monitoring
- Will there be two sets of RF signals?


Tests in Progress

• SHORT TERM (This year, early next year)


- GPS time synchronisation measurements
- IRIG-B date transmission tests
- LEP RF post mortem
- PowerPC, GPS, WorldFIP communication
- WorldFIP cycle jitter referenced to GPS
- MEDIUM TERM (Next year)
 - Connection of GPS time to PROFIBUS
 - String2 tests in SM18
 - CMS, ATLAS, LHC-B, beam tests + BST Transmission tests with TTC System
 - 10MHz

GPS INSTALLATIONS AT CERN

Gary Beetham

Overall TTC Distribution

B.G. Taylor 99.10.03

Conclusions (TimWG)

- The TimWG has achieved many of the initial objectives.
- The short / mid term tests, should be monitored and their results presented to the TimWG.
- The periodicity of the TimWG meetings will be aligned with the test results
- To avoid divergence, aim for one "fast" plus one "slow" timing system for all LHC equipment
- It was considered too early to define the overall timing philosophy, PS<>SPS<>LHC, require input from operations and the CO-OP forum.

Conclusions (PLC)

"The TimWG should continue its work with the objective of producing a final definition of the timing before the end of 2000"

Gary Beetham