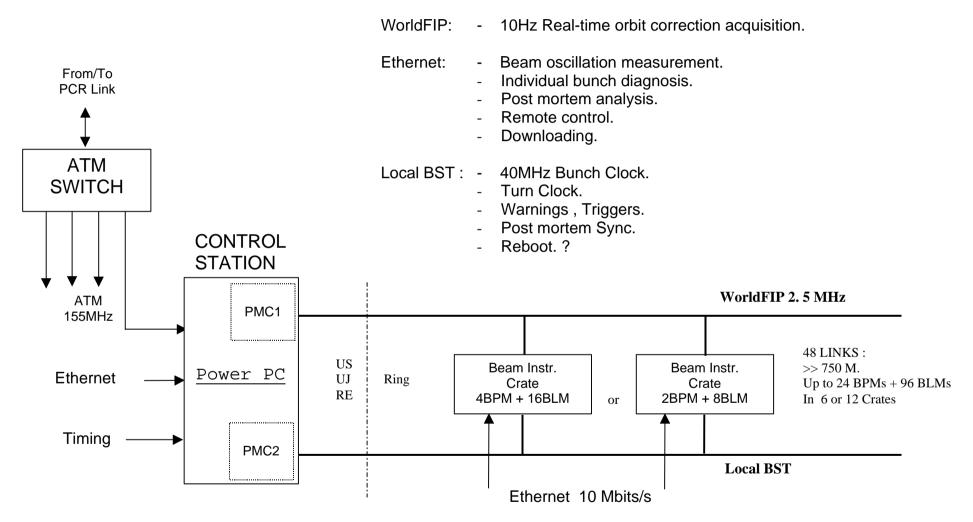
<u>SL/BI</u> <u>Timing requirements for LHC</u>

- Timing Classification
- Summary List of SL / BI Instruments
- > BPM / BLM control in LHC Tunnel
- LEP Beam instrumentation Timing overview

➢ Reuse of LEP BST (Beam Synchronous Timing) ?

Classification


Time Resolution & max. Jitter p.p.

A) Millisecond based machine timing: (Slow Timing) Actual features provide by TG8.	1 ms
With detailed machine status (pilot pulse, injection nb, energy level, etc) With Time of day : sec. > x μ s (GPS) ? For archiving of data.	50 μs
 B) Beam Synchronous distributed commands : Injection Warnings, Instrument triggers, Real time settings Post Mortem Synchronisation to freeze acquisitions With Cable length delay compensation 	10 µs
C) Revolution Frequency (11KHz): With Cable length delay compensation With Local Turn Nb identification & selection	5 ns
D) Bunch Frequency (40 MHz): With Internal delays compensation With Batch Nb identification or selection With Bunch Nb identification or selection	5 ns
E)Radio Frequency (400 MHz) : With RFcounter reset	100ps

	Summary List of SL / BI Instruments (See LHC- Project Note 144)							
	Designation	Code	Detectors Location	Total Number	Acquisition Crates Location	Number of Crates	Timing Requirements	
Transfer Lines TI2 & TI8	Beam Loss Monitor Beam Position Monitor Screen	BLMI BPMI BTVI	distributed outside line distributed along line distributed along line	20 per line 62 in TI2 48 in TI8 10 per line	Spread Along lines	16 in TI2 12 in TI8 2	A, B, C, D A, B, C, D A, B	
Injection Points	Screen	BTVI	upst. or downst. MSI/MKI/TDI 1 downst. IP between Q5&Q6	4 / injection point 1 / injection point	US 25 / US 85	2	Α, Β	
Two Dump Lines	Scintillator Screen Collimator	BSCD BTVD TCD	1 downst. Dump block TDE up. or downst. MSD/MKB/TDE 1 upstr. Q4 in the ring	1 per dump line 4 per dump line 1 per ring	US 65	2 2 1	A , B A , B A , B	
Two Rings	Beam Loss Monitor Beam Position Monitor & 4 strip lines	BLM BLMC BPM BPMS	around each quadrupole around collim. Blocks in IR3&7 At the end of each quadrupole	~ 2000 per ring ~ 25 per ring 486 per ring 16 for 2 rings	Spread Around tunnel	247	A, B, C, D	
	Pick-up for Specific use	BPXX	Around IP4	~ 10 per ring	US 45	10	A, B, C, D, E	
	New Profile Monitor Synchro. Rad. Telescope	BISH/V BSRT	at Q3 in IR4 downst. D2 in IR1 (or IR5)	1 H &1 V per ring 1 per ring	US 45 US 15	1 1	A , B , C A, B, C, D	
	Wire scanner	WSH/V	in IR1(or IR5) & at Q3 in IR4	2 H & 2V per ring	US 15 , US 45	2	A, B, C	
	Screen for Single Turn+ Screen for B Matching	BTV BTVM	in IR1 , 2 , 3 , 4 , 5 , 6 , 7 & 8 at Q3 in IR4	8 per ring 1 H &1 V per ring	In 8 US or UJ US 45	8 1	A , B A , B	
	Luminosity Detector	LUM	In IR 1, 2, 5, 8	4 per ring	In 4 US	8	A, B, C, D	

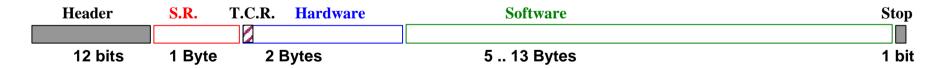
Major requirements : BLM & BPM
 Specific requirements : Around IP4

BPM / PLM Control in LHC Tunnel (First proposition)

! Objective : Combine data flow in one medium and without using optical fibre in tunnel !

Reuse of LEP BST (Beam Synchronous Timing) ?

Short Description of BST System :


Goal: Synchronise instruments together and/or with events.

Sequence of broadcast message at revolution frequency from a master to all instruments.

Transmission clock rate : ~ 2.9 MHz = Revolution frequency * 256 carry out by a PLL.

Transmission media : Single mode 1310 nm F.O. network from PCR to US / UJ and RE.

BST MESSAGE BIT ALLOCATION

BST MESSAGE ASSEMBLER (BSTMaster)

- Continuous transmission of one message per cycle (88.924 µs)
- Master scans a list of instruments controlled by tasks.
- A task is a sequence of predefined messages controlled by events.
- An event could be an external trigger, GMT event, Service Request, internal event, etc...
- Transmitted message = "OR" of empty message and current message of all instruments +
- Set Turn Clock Reset bit every 2¹⁵ turns.

BST MESSAGE RECEIVER (BSTI + BSTR)

- Return message with service request if any.
- Put message in a temporary memory and wait x ~ 43 ns step delay.
- Send Local Turn Clock & Hardware message on an output connector.
- Count turn. (Reset counter if TCR)
- If subscripted (Masked), Send Software message in local FIFO and send an IRQ to the CPU.

BST update to cover SL/BI requirements for LHC :

Redesign a PLL . 40 MHz Free Run Frequency. 40 MHz Bunch clock recovery.

Extend distribution around LHC tunnel & transfer lines. 50 Ohms cables or optical fibre transmission ? Simplex or duplex in tunnel ?

Redefine message partitioning. Increase the number of bytes up to 16. Include new fields for machine status, SSC number, etc....

Update BSTI

Include BSTR functionalities & new features. Conserve VME format or new design in mezzanine card ?